
GUTS Token Sale Audit

AUTHOR: MATTHEW DI FERRANTE

2017-10-22

GUTS Token Sale Audit 2017-10-22

Audited Material Summary

The audit consists of the following contracts:

• GetCrowdsale.sol
• GetFinalizeAgent.sol
• GetPreCrowdsale.sol
• GetPreFinalizeAgent.sol
• GetPrePricingStrategy.sol
• GetPricingStrategy.sol
• GetToken.sol
• GetWhitelist.sol

The git commit hash of the reviewed files is cec35f217108f60eb50a6c607245c4494c546293.

Description

The GUTS Token sale is implemented through TokenMarket’s ICO contracts. The main crowdsale
logic for these contracts is inherited from Crowdsale.sol + MintedTokenCappedCrowdsale.sol, both
GetCrowdsale.sol and GetPreCrowdsale.sol extend the functionality and set some state variables.

The Presale and Crowdsale are both structured to use the same token, but di�erent smart contracts
(GetPreCrowdsale and GetCrowdsale respectively).

When the presale finishes, a finalization agent set when GetCrowdsale.sol is deployed calls
logPresaleResults to migrate the results of the presale into the main Crowdsale.

The TokenMarket contracts have been used in a variety of other ICOs and have been previously audited:

• Civic
• Storj
• Monaco
• DENT
• Bitquence
• InsureX

See the following repository for abreakdownof theTokenMarket contracts: https://github.com/TokenMarketNet/ico

This audit focuses on GUTS’ specific usage of the TokenMarket tokens.

Author: Matthew Di Ferrante 2

GUTS Token Sale Audit 2017-10-22

Security summary

The contracts are correctly constructed have nomajor security issues that pose a threat to users or
their balances.

GetCrowdsale.sol

GetCrowdsale is an implementation ofMintedTokenCappedCrowdsale from the TokenMarket contracts,
and inherits from it directly:

1 contract GetCrowdsale is MintedTokenCappedCrowdsale

Security note

The only recommendation I have here is, due to the presale being a di�erent contract, the invest
should not be available until logPresaleResults has been called, to ensure that there are no
numerical conflicts if it’s done during the Crowdsale, and also ensuring Crowdsale participants can see
howmuch was raised in the presale through the contract before investing.

Constructor

1 function GetCrowdsale(
2 uint _lockTime, FinalizeAgent _presaleFinalizeAgent,
3 address _token, PricingStrategy _pricingStrategy, address

_multisigWallet,
4 uint _start, uint _end, uint _minimumFundingGoal, uint

_maximumSellableTokens)
5
6 MintedTokenCappedCrowdsale(_token, _pricingStrategy, _multisigWallet,
7 _start, _end, _minimumFundingGoal, _maximumSellableTokens)
8 {
9 require(_presaleFinalizeAgent.isSane());
10 require(_lockTime > 0);
11 lockTime = _lockTime;
12 presaleFinalizeAgent = _presaleFinalizeAgent;
13 }

Author: Matthew Di Ferrante 3

GUTS Token Sale Audit 2017-10-22

The constructor passes variables through to parent constructor of MintedTokenCappedCrowdsale,
and does sanity checking on the presale agent and lock time variables, and commits the presale agent
to storage.

logPresaleResults

1 function logPresaleResults(uint tokenAmount, uint weiAmount) returns (
bool) {

2
3 require(msg.sender == address(presaleFinalizeAgent));
4 weiRaised = weiRaised.plus(weiAmount);
5 tokensSold = tokensSold.plus(tokenAmount);
6 presaleWeiRaised = presaleWeiRaised.plus(weiAmount);
7
8 PresaleUpdated(weiAmount, tokenAmount);
9 return true;
10 }

The logPresaleResults function records presale token and ether allocation in the crowdsale con-
tract and emits a PresaleUpdated event.

It can only be called by presaleFinalizeAgent.

All arithmetic operations use SafeMath.

preallocate

1 function preallocate(address receiver, uint fullTokens, uint weiPrice)
public onlyOwner {

2
3 uint tokenAmount = fullTokens * 10**token.decimals();
4 uint weiAmount = weiPrice * fullTokens; // This can be also 0, we

give out tokens for free
5
6 weiRaised = weiRaised.plus(weiAmount);
7 tokensSold = tokensSold.plus(tokenAmount);
8
9 presaleWeiRaised = presaleWeiRaised.plus(weiAmount);
10
11 investedAmountOf[receiver] = investedAmountOf[receiver].plus(

weiAmount);

Author: Matthew Di Ferrante 4

GUTS Token Sale Audit 2017-10-22

12 tokenAmountOf[receiver] = tokenAmountOf[receiver].plus(tokenAmount
);

13
14 assignTokens(receiver, tokenAmount);
15
16 // Tell us invest was success
17 Invested(receiver, weiAmount, tokenAmount, 0);
18 }

The preallocate function preallocates tokens to an address, and does some accounting to keep the
weiRaised, tokensSold and presaleWeiRaised variables consistent.

The investedAmountOf and tokenAmountOfmaps for the receiver are also updated for the number
of wei raised and number of tokens allocated, respectively.

The tokens are assigned by calling the internal function assignTokens, and on success an Invested
event is emitted.

Note: The tokenAmount and weiAmount calculations do not use SafeMath.

setEarlyParicipants

1 function setEarlyParicipantWhitelist(address addr, bool status)
onlyOwner {

2 // We don’t need this function, we have external whitelist
3 revert();
4 }

The setEarlyParticipants function is unused due to the whitelist functionality, therefore Crowd-
sale.sol’s implementation is overridden here with a revert().

The function can only be called by the owner of GetCrowdsale, but it does nothing either way.

assignTokens

1 function assignTokens(address receiver, uint tokenAmount) private {
2 MintableToken mintableToken = MintableToken(token);
3 mintableToken.mint(receiver, tokenAmount);
4 }

The assignTokens function allocates an amount of tokens to an address. It is a private function and
cannot be called directly, and is only ever called by the preallocate function.

Author: Matthew Di Ferrante 5

GUTS Token Sale Audit 2017-10-22

This function assumes token implements a MintableToken interface and typecasts the more generic
token variable which is a FractionalERC20 type as defined in Crowdsale.sol.

finalize

1 function finalize() public inState(State.Success) onlyOwner
stopInEmergency {

2 require(now > endsAt + lockTime);
3 super.finalize();
4 }

The finalize function ensures that the current time is past the crowdsale end date + the lock time,
and calls Crowdsale.sol’s parent implementation of finalize.

This function can only be called by the owner of GetCrowdsale, and cannot be called if the contract is
halted.

This function can only succeed if the crowdsale is in the State.Success stage.

Default Function

1 function() payable {
2 invest(msg.sender);
3 }

The default function in this contract is merely a passthrough to Crowdsale.sol’s invest function, passing
msg.sender as the argument.

GetToken.sol

The GetToken contract is a very simple initializer for the underlying CrowdsaleToken +
BurnableToken implementation:

1 contract GetToken is CrowdsaleToken, BurnableToken {
2 function GetToken() CrowdsaleToken(
3 "Guaranteed Entrance Token",
4 "GET",
5 0, // We don’t want to have initial supply
6 18,

Author: Matthew Di Ferrante 6

GUTS Token Sale Audit 2017-10-22

7 true // Mintable
8)
9 {}
10 }

It takes no arguments and simply passes some hardcoded variables to the inherited CrowdsaleToken
constructor.

The full inheritance chain makes GetToken contain the following functionality:

• ReleasableToken: ERC20 + transfer freeze / unfreeze functionality, transfers frozen by default
• MintableToken: ERC20 + mint functionality, where a mintAgent can create new tokens, with
minting permanently disabled once the tokens are “released”

• BurnableToken: ERC20 + burn functionality, which allows a token holder (contract or account) to
burn their own tokens

• UpgradeableToken: ERC20 + upgrade functionality, where an upgrade agent can set a new
revision for the token contract and users can opt-in to have their balances transferred to the new
contract.

Security note

The inheritance hierarchy of the TokenMarket contracts is non-trivial - any additional function overrides
should be triple checked in case the function is implemented bymore than one parent, as solidity’s
super call order is somewhat unintuitive.

GetPreCrowdsale.sol

GetPreCrowdsale inherits from MintedTokenCappedCrowdsale, just like GetCrowdsale, but
lacks any additional functions beyond the override function to setEarlyParticipantsWhitelist.

1 contract GetPreCrowdsale is MintedTokenCappedCrowdsale

Constructor

1 function GetPreCrowdsale(
2 address _token, PricingStrategy _pricingStrategy, address

_multisigWallet,
3 uint _start, uint _end, uint _maximumSellableTokens)

Author: Matthew Di Ferrante 7

GUTS Token Sale Audit 2017-10-22

4 MintedTokenCappedCrowdsale(_token, _pricingStrategy,
_multisigWallet,

5 _start, _end, 0, _maximumSellableTokens)
6 {
7 }

The constructor for GetPreCrowdsale simply passes all of its arguments to the parent constructor of
MintedTokenCappedCrowdsale, and implements no additional logic.

Default Function

Just like in GetCrowdsale, the default function for the presale is simply a msg.sender passthrough
to invest, and is the only way to participate in the sale.

GetWhitelist.sol

The GetWhitelist contract is the only contract that is mostly written from scratch, inheriting only
Ownable from Zeppelin and using SafeMath as a library:

1 contract GetWhitelist is Ownable

It implements both whitelisting functionality and tranche allowances per investor.

Constructor

1 function GetWhitelist(uint _presaleCap, uint _tier1Cap, uint _tier2Cap
, uint _tier3Cap, uint _tier4Cap) {

2 presaleCap = _presaleCap;
3 tier1Cap = _tier1Cap;
4 tier2Cap = _tier2Cap;
5 tier3Cap = _tier3Cap;
6 tier4Cap = _tier4Cap;
7 }

The constructor simply stores the supplied caps to their respective storage variables.

Author: Matthew Di Ferrante 8

GUTS Token Sale Audit 2017-10-22

isGetWhiteList

1 function isGetWhiteList() constant returns (bool) {
2 return true;
3 }

The isGetWhiteList function is used by calling contracts to check whether an address implements
the GetWhitelist interface.

acceptBatched

1 function acceptBatched(address[] _addresses, bool _isEarly)
onlyWhitelister {

2 // trying to save up some gas here
3 uint _presaleCap;
4 if (_isEarly) {
5 _presaleCap = presaleCap;
6 } else {
7 _presaleCap = 0;
8 }
9 for (uint i=0; i<_addresses.length; i++) {
10 entries[_addresses[i]] = WhitelistInfo(
11 _presaleCap,
12 tier1Cap,
13 tier2Cap,
14 tier3Cap,
15 tier4Cap,
16 true
17);
18 }
19 NewBatch();
20 }

TheacceptBatched function takes a list of addresses and a boolean specifyingwhether the addresses
are allowed toparticipate in the crowdsale, and initializes the structure for eachaddress in theentries
map with the default caps. It emits a NewBatch event when successful.

This function can only be called by an address in the set of whitelisters.

accept

Author: Matthew Di Ferrante 9

GUTS Token Sale Audit 2017-10-22

1 function accept(address _address, bool _isEarly) onlyWhitelister {
2 require(!entries[_address].isWhitelisted);
3 uint _presaleCap;
4 if (_isEarly) {
5 _presaleCap = presaleCap;
6 } else {
7 _presaleCap = 0;
8 }
9 entries[_address] = WhitelistInfo(_presaleCap, tier1Cap, tier2Cap,

tier3Cap, tier4Cap, true);
10 NewEntry(_address);
11 }

The accept function is single-address version of acceptBatch, but otherwise functionally equivalent
other than refusing to run if the address is already whitelisted.

It can only be called by an address in the set of whitelisters.

subtractAmount

1 function subtractAmount(address _address, uint _tier, uint _amount)
onlyWhitelister {

2 require(_amount > 0);
3 require(entries[_address].isWhitelisted);
4 if (_tier == 0) {
5 entries[_address].presaleAmount = entries[_address].

presaleAmount.minus(_amount);
6 EdittedEntry(_address, 0);
7 return;
8 }else if (_tier == 1) {
9 entries[_address].tier1Amount = entries[_address].tier1Amount.

minus(_amount);
10 EdittedEntry(_address, 1);
11 return;
12 }else if (_tier == 2) {
13 entries[_address].tier2Amount = entries[_address].tier2Amount.

minus(_amount);
14 EdittedEntry(_address, 2);
15 return;
16 }else if (_tier == 3) {

Author: Matthew Di Ferrante 10

GUTS Token Sale Audit 2017-10-22

17 entries[_address].tier3Amount = entries[_address].tier3Amount.
minus(_amount);

18 EdittedEntry(_address, 3);
19 return;
20 }else if (_tier == 4) {
21 entries[_address].tier4Amount = entries[_address].tier4Amount.

minus(_amount);
22 EdittedEntry(_address, 4);
23 return;
24 }
25 revert();
26 }

The subtractAmount function ensures that an address is in the whitelist (otherwise it throws), and
subtracts their allowance for the specified tranche accordingly. Due to the SafeMath usage underflows
cause the contract to throw. If the tranche is beyond 4 it will also throw.

It can only be called by an address in the set of whitelisters.

setWhitelister

1 function setWhitelister(address _whitelister, bool _isWhitelister)
onlyOwner {

2 whitelisters[_whitelister] = _isWhitelister;
3 WhitelisterChange(_whitelister, _isWhitelister);
4 }

The setWhitelister function allows the contract owner to add or remove an address from the set
of whitelisters.

It can only be called by the contract owner.

setCaps

1 function setCaps(uint _presaleCap, uint _tier1Cap, uint _tier2Cap,
uint _tier3Cap, uint _tier4Cap) onlyOwner {

2 presaleCap = _presaleCap;
3 tier1Cap = _tier1Cap;
4 tier2Cap = _tier2Cap;
5 tier3Cap = _tier3Cap;
6 tier4Cap = _tier4Cap;

Author: Matthew Di Ferrante 11

GUTS Token Sale Audit 2017-10-22

7 }

The setCaps function allows the contract owner to set or update the tranche caps for the crowdsales.

It can only be called by the contract owner.

Default Function

1 function() payable {
2 revert();
3 }

The default function simply throws, to prevent payment to this contract.

GetPricingStrategy.sol

The GetPricingStrategy contract sets the pricing mechanism for GetCrowdsale. It implements a
tranche based pricing strategy, inheriting from EthTranchePricing:

1 contract GetPricingStrategy is EthTranchePricing

It also checks any incoming investor addresses against a whitelist and throws if the investor is not
whitelisted.

Constructor

1 function GetPricingStrategy(GetWhitelist _whitelist, uint[] _tranches)
EthTranchePricing(_tranches) {

2 assert(_whitelist.isGetWhiteList());
3 whitelist = _whitelist;
4 }

The constructor takes a GetWhitelist contract address that it uses ensure purchasing addresses are
whitelisted, and enforces tiered caps for each investing address.

The parent constructor for EthTrancePricing is called with the list of tranches as an argument.

Author: Matthew Di Ferrante 12

GUTS Token Sale Audit 2017-10-22

isPresalePurchase

1 function isPresalePurchase(address purchaser) public constant returns
(bool) {

2 return false;
3 }

The isPresalePurchase function returns false, as the tranche pricing strategy is only for the main
Crowdsale.

setCrowdsale

1 function setCrowdsale(address _crowdsale) onlyOwner {
2 require(_crowdsale != 0);
3 crowdsale = _crowdsale;
4 }

The setCrowdsale function allows the contract owner to set the address of the crowdsale. The
function sanity checks that the supplied address is not 0.

isSane

1 function isSane(address _crowdsale) public constant returns (bool) {
2 return crowdsale == _crowdsale;
3 }

The isSane function returns true if the supplied address matches the address set as the crowdsale in
the storage state, and false otherwise.

getCurrentTrancheIndex

1 function getCurrentTrancheIndex(uint weiRaised) public constant
returns (uint) {

2 uint i;
3
4 for(i=0; i < tranches.length; i++) {
5 if(weiRaised < tranches[i].amount) {
6 return i-1;
7 }

Author: Matthew Di Ferrante 13

GUTS Token Sale Audit 2017-10-22

8 }
9 }

The getCurrentTrancheIndex function iterates through the tranches supplied at deployment time
and returns the last tranche that closes the weiRaised amount.

Security note

The counter i in this function can underflow in case weiRaised is 0 at Crowdsale time.

calculatePrice

1 function calculatePrice(uint value, uint weiRaised, uint tokensSold,
address msgSender, uint decimals) public constant returns (uint) {

2 require(msg.sender == crowdsale);
3 uint amount;
4 bool isEarly;
5 bool isWhitelisted;
6 uint trancheIndex = getCurrentTrancheIndex(weiRaised);
7 whitelist.subtractAmount(msgSender, trancheIndex + 1, value);
8
9 uint multiplier = 10 ** decimals;
10 return value.times(multiplier) / tranches[trancheIndex].price;
11 }

The calculatePrice function is used by Crowdsale.sol to calculate the tokens received for an invest-
ment.

Based on the amount of wei raised so far, it retrieves the corresponding tranche and subtracts the
amount from the sender’s allowance in that tranche.

It then returns weiInvested*10^18 / current_tranche_price as the amount of tokens to allo-
cate.

Security note

The division by tranche price does not use SafeMath.

isEarly, isWhitelisted and amount are not used and should be removed for code clarity.

Author: Matthew Di Ferrante 14

GUTS Token Sale Audit 2017-10-22

Default Function

The default function in this contract simply throws.

GetPrePricingStrategy.sol

The GetPrePricingStrategy contract is almost the same as the GetPricingStrategy contract,
except for it implements a flat pricing mechanism instead of tranche pricing:

1 contract GetPrePricingStrategy is FlatPricing, Ownable

In the interest of brevity I will only analyze the functions that are not functionally equivalent to
GetPricingStrategy.

Constructor

1 function GetPrePricingStrategy(GetWhitelist _whitelist, uint
_oneTokenInWei) FlatPricing(_oneTokenInWei) {

2 assert(_whitelist.isGetWhiteList());
3 whitelist = _whitelist;
4 }

The constructor simply assigns the whitelist like in GetPricingStrategy, and calls the parent con-
structor FlatPricing, taking an argument for the amount one token should cost, denominated in
wei.

calculatePrice

1 function calculatePrice(uint value, uint weiRaised, uint tokensSold,
address msgSender, uint decimals) public constant returns (uint) {

2 // only precrowdsale can call this
3 require(msg.sender == precrowdsale);
4 // 0 is the presale tier.
5 whitelist.subtractAmount(msgSender, 0, value);
6 return super.calculatePrice(value, weiRaised, tokensSold,

msgSender, decimals);
7 }

Author: Matthew Di Ferrante 15

GUTS Token Sale Audit 2017-10-22

The calculatePrice function, just like in GetPriceStrategy, subtracts allowance for the sender
from the whitelist, and then defers the price calculation to the parent calculatePrice implementa-
tion in FlatPricing, which simply returns:

weiInvested*10^18 / token_cost_in_wei

GetFinalizeAgent.sol

The GetFinalizeAgent contract extends a FinalizeAgent interface whichmints reserve tokens
and finalizes the crowdsale, releasing the tokens andmaking them available for transfer and use..

1 contract GetFinalizeAgent is FinalizeAgent

Constructor

1 function GetFinalizeAgent(CrowdsaleToken _token, Crowdsale _crowdsale,
2 address _userGrowthMultisig, address _stabilityMultisig,

address _bountyMultisig) {
3 token = _token;
4 crowdsale = _crowdsale;
5 if(address(crowdsale) == 0) {
6 revert();
7 }
8
9 require(_userGrowthMultisig != 0);
10 require(_stabilityMultisig != 0);
11 require(_bountyMultisig != 0);
12
13 userGrowthMultisig = _userGrowthMultisig;
14 stabilityMultisig = _stabilityMultisig;
15 bountyMultisig = _bountyMultisig;
16 }

The constructor does some sanity checking on arguments and assigns them to their respective storage
variables.

isSane

Author: Matthew Di Ferrante 16

GUTS Token Sale Audit 2017-10-22

1 function isSane() public constant returns (bool) {
2 return (token.mintAgents(address(this)) == true) && (token.

releaseAgent() == address(this));
3 }

The isSane function returns true if the GetFinalizeAgent is one of the token’s mintAgents and also set
as the token’s releaseAgent.

finalizeCrowdsale

1 function finalizeCrowdsale() {
2 if(msg.sender != address(crowdsale)) {
3 revert();
4 }
5
6 uint tokensSold = crowdsale.tokensSold();
7 uint decimals = token.decimals();
8
9 // maximum digits here (10 + 18 + 12)
10 token.mint(userGrowthMultisig, tokensSold.times(73170731707) /

100000000000);
11
12 token.mint(stabilityMultisig, 12600000 * (10**decimals));
13 token.mint(bountyMultisig, 1800000 * (10**decimals));
14
15 // Make token transferable
16 token.releaseTokenTransfer();
17 }

The finalizeCrowdsale function mints tokens for user growth, stability and bounty multisigs, and
releases the tokens, disabling minting.

Security note

Would be better to have constant variables instead of magic numbers hardcoded inline for token
issuance.

Default Function

Author: Matthew Di Ferrante 17

GUTS Token Sale Audit 2017-10-22

1 function() payable {
2 revert();
3 }

The default function just prevents payments to this contract.

GetPreFinalizeAgent.sol

The GetPreFinalizeAgent contract is the same functionally as GetFinalizeAgent, except it is
meant to finalize the presale.

It inherits from FinalizeAgent and Ownable:

1 contract GetPreFinalizeAgent is FinalizeAgent, Ownable

Constructor

1 function GetPreFinalizeAgent(GetCrowdsale _preCrowdsale) {
2
3 if(address(_preCrowdsale) == 0) {
4 revert();
5 }
6 preCrowdsale = _preCrowdsale;
7
8 }

The constructor only assigns the crowdsale address to the storage variable a�err ensuring it isn’t 0.

setCrowdsale

1 function setCrowdsale(GetCrowdsale _crowdsale) onlyOwner {
2 require(address(_crowdsale) != 0);
3 crowdsale = _crowdsale;
4 }

The setCrowdsale function allows the contract owner to set the address for the crowdsale contract.

Author: Matthew Di Ferrante 18

GUTS Token Sale Audit 2017-10-22

isSane

1 function isSane() public constant returns (bool) {
2 // cannot check crowdsale yet since it is not set.
3 return true;
4 }

The isSane function is a dummy function that always returns true.

finalizeCrowdsale

1 function finalizeCrowdsale() {
2 if(msg.sender != address(preCrowdsale)) {
3 revert();
4 }
5
6 // log the results to the main crowdsale
7 uint tokensSold = preCrowdsale.tokensSold();
8 uint weiRaised = preCrowdsale.weiRaised();
9 if (!crowdsale.logPresaleResults(tokensSold, weiRaised)) {
10 revert();
11 }
12 }

The finalizeCrowdsale function finalizes the presale by retrieving the tokens sold and wei raised
from the presale contract and calling logPresaleResults on the crowdsale contract, to migrate the
accounting over.

It can only be called by the presale contract.

Default Function

1 function() payable {
2 revert();
3 }

The default function prevents any ether from being sent to this contract.

Author: Matthew Di Ferrante 19

GUTS Token Sale Audit 2017-10-22

Disclaimer

This audit concerns only the correctness of the Smart Contracts listed, and is not to be taken as an
endorsement of the platform, team, or company.

Audit Attestation

This audit has been signed by the key provided on https://keybase.io/mattdf - and the signature is
available on https://github.com/mattdf/audits/

Author: Matthew Di Ferrante 20

	Audited Material Summary
	Description
	Security summary

	GetCrowdsale.sol
	Security note
	Constructor
	logPresaleResults
	preallocate
	setEarlyParicipants
	assignTokens
	finalize
	Default Function

	GetToken.sol
	Security note

	GetPreCrowdsale.sol
	Constructor
	Default Function

	GetWhitelist.sol
	Constructor
	isGetWhiteList
	acceptBatched
	accept
	subtractAmount
	setWhitelister
	setCaps
	Default Function

	GetPricingStrategy.sol
	Constructor
	isPresalePurchase
	setCrowdsale
	isSane
	getCurrentTrancheIndex
	Security note
	calculatePrice
	Security note
	Default Function

	GetPrePricingStrategy.sol
	Constructor
	calculatePrice

	GetFinalizeAgent.sol
	Constructor
	isSane
	finalizeCrowdsale
	Security note
	Default Function

	GetPreFinalizeAgent.sol
	Constructor
	setCrowdsale
	isSane
	finalizeCrowdsale
	Default Function

	Disclaimer
	Audit Attestation

